Both TEAD-binding and WW domains are required for the growth stimulation and oncogenic transformation activity of yes-associated protein.
نویسندگان
چکیده
The Yes-associated protein (YAP) transcription coactivator is a candidate human oncogene and a key regulator of organ size. It is phosphorylated and inhibited by the Hippo tumor suppressor pathway. TEAD family transcription factors were recently shown to play a key role in mediating the biological functions of YAP. Here, we show that the WW domain of YAP has a critical role in inducing a subset of YAP target genes independent of or in cooperation with TEAD. Mutation of the WW domains diminishes the ability of YAP to stimulate cell proliferation and oncogenic transformation. Inhibition of YAP oncogenic-transforming activity depends on intact serine residues 127 and 381, two sites that could be phosphorylated by the Hippo pathway. Furthermore, genetic experiments in Drosophila support that WW domains of YAP and Yki, the fly YAP homologue, have an important role in stimulating tissue growth. Our data suggest a model in which YAP induces gene expression and exerts its biological functions by interacting with transcription factors through both the TEAD-binding and WW domains.
منابع مشابه
Control of Tissue Growth and Cell Transformation by the Salvador/Warts/Hippo Pathway
The Salvador-Warts-Hippo (SWH) pathway is an important regulator of tissue growth that is frequently subverted in human cancer. The key oncoprotein of the SWH pathway is the transcriptional co-activator, Yes-associated protein (YAP). YAP promotes tissue growth and transformation of cultured cells by interacting with transcriptional regulatory proteins via its WW domains, or, in the case of the ...
متن کاملThe Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain.
The transcriptional coactivator Yes-associated protein (YAP) is a major regulator of organ size and proliferation in vertebrates. As such, YAP can act as an oncogene in several tissue types if its activity is increased aberrantly. Although no activating mutations in the yap1 gene have been identified in human cancer, yap1 is located on the 11q22 amplicon, which is amplified in several human tum...
متن کاملGenetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP.
The Drosophila TEAD ortholog Scalloped is required for Yki-mediated overgrowth but is largely dispensable for normal tissue growth, suggesting that its mammalian counterpart may be exploited for selective inhibition of oncogenic growth driven by YAP hyperactivation. Here we test this hypothesis genetically and pharmacologically. We show that a dominant-negative TEAD molecule does not perturb no...
متن کاملTranscriptional output of the Salvador/warts/hippo pathway is controlled in distinct fashions in Drosophila melanogaster and mammalian cell lines.
The Salvador/Warts/Hippo (SWH) pathway is an important modulator of organ size, and deregulation of pathway activity can lead to cancer. Several SWH pathway components are mutated or expressed at altered levels in different human tumors including NF2, LATS1, LATS2, SAV1, and YAP. The SWH pathway regulates tissue growth by restricting the activity of the transcriptional coactivator protein known...
متن کاملMyocardin-Related Transcription Factor A and Yes-Associated Protein Exert Dual Control in G Protein-Coupled Receptor- and RhoA-Mediated Transcriptional Regulation and Cell Proliferation.
The ability of a subset of G protein-coupled receptors (GPCRs) to activate RhoA endows them with unique growth-regulatory properties. Two transcriptional pathways are activated through GPCRs and RhoA, one utilizing the transcriptional coactivator myocardin-related transcription factor A (MRTF-A) and serum response factor (SRF) and the other using the transcriptional coactivator Yes-associated p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 69 3 شماره
صفحات -
تاریخ انتشار 2009